Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers.
نویسندگان
چکیده
Because cell shape and alignment, cell-matrix adhesion, and cell-cell contact can all affect growth, and because mechanical strains in vivo are multiaxial and anisotropic, we developed an in vitro system for engineering aligned, rod-shaped, neonatal cardiac myocyte cultures. Photolithographic and microfluidic techniques were used to micropattern extracellular matrices in parallel lines on deformable silicone elastomers. Confluent, elongated, aligned myocytes were produced by varying the micropattern line width and collagen density. An elliptical cell stretcher applied 2:1 anisotropic strain statically to the elastic substrate, with the axis of greatest stretch (10%) either parallel or transverse to the myofibrils. After 24 h, the principal strain parallel to myocytes did not significantly alter myofibril accumulation or expression of atrial natriuretic factor (ANF), connexin-43 (Cx-43), or N-cadherin (by indirect immunofluorescent antibody labeling and immunoblotting) compared with unstretched controls. In contrast, 10% transverse principal strain resulted in continuous staining of actin filaments (rhodamine phalloidin); increased immunofluorescent labeling of ANF, Cx-43, and N-cadherin; and upregulation of protein signal intensity by western blotting. By using microfabrication and microfluidics to control cell shape and alignment on an elastic substrate, we found greater effects for transverse than for longitudinal stretch in regulating sarcomere organization, hypertrophy, and cell-to-cell junctions.
منابع مشابه
Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes In vitro.
Pressure overload in vivo results in left ventricular hypertrophy and activation of the renin-angiotensin system in the heart. Mechanical stretch of neonatal rat cardiac myocytes in vitro causes secretion of angiotensin II (Ang II), which in turn plays a pivotal role in mechanical stretch-induced hypertrophy. Although in vivo data suggest that the stimulus of hemodynamic overload serves as an i...
متن کاملLosartan prevents stretch induced electrical remodeling in cultured atrial neonatal myocytes Running Head: Losartan and Electrical Remodeling
Atrial fibrillation (AF) is the most frequent arrhythmia found in clinical practice. In recent studies a decrease in the development or recurrence of AF was found in patients with hypertension treated with angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor-blocking agents (ARBs). Hypertension is related to an increased wall tension in the atria resulting in increased stretch...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملMechanical stretch activates the stress-activated protein kinases in cardiac myocytes.
We have recently shown that mechanical stress activates a phosphorylation cascade of protein kinases including Raf-1 and the extracellular signal-regulated kinases (ERKs) in cultured cardiac myocytes partially through the enhanced secretion of angiotensin II. Osmotic stress in budding yeast has been shown to activate similar signaling molecules including Hog-1, a distant relative of the ERK fam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biotechnology and bioengineering
دوره 81 5 شماره
صفحات -
تاریخ انتشار 2003